### Multiples

**Multiples** of a number are the product of that number and another whole number.

To find the **product** of two numbers, you multiply the two numbers.

Knowing the times table for a number will tell you it’s multiples.

The multiples of 2 are

2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, etc..

### Common Multiples

If you are asked to find a **common** multiple for a set of numbers, you are being asked to find a multiple that is **the same** for those numbers.

For example:

To find a common multiple of 3, 6 and 8, we must write down multiples of each until we find one that they all share:

Multiples of 3 are:

3, 6, 9, 12, 15, 18, 21, 24

Multiples of 6 are:

6, 12, 18, 24

Multiples of 8 are:

8, 16, 24

So **24** is a common multiple of 3, 6 and 8.

### Times Tables

By learning the times tables up to 12 times 12, you will be able to multiply two numbers together in your head and you will know the multiples of all the numbers up to 12.

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |

1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |

2 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 |

3 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 33 | 36 |

4 | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 |

5 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 |

6 | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 | 66 | 72 |

7 | 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 | 70 | 77 | 84 |

8 | 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 | 88 | 96 |

9 | 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90 | 99 | 108 |

10 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 |

11 | 11 | 22 | 33 | 44 | 55 | 66 | 77 | 88 | 99 | 110 | 121 | 132 |

12 | 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 | 120 | 132 | 144 |